Question		Answer	Marks	Guidance	
1	(i)	$v=0$ when it arrives $\begin{aligned} & 150000\left(t-\frac{1}{4} t^{2}\right)=0 \\ & \Rightarrow t=4 \text { (on arrival) } \end{aligned}$	B1 [1]	Award this mark for substituting $t=4$ to obtain $v=0$ Condone omission of $t=0$	
	(ii)	Distance travelled $s=\int v \mathrm{~d} t$ $s=150000\left[\frac{1}{2} t^{2}-\frac{1}{12} t^{3}\right](+c)$ When $t=4, s=400000$ The journey is 400000 km	M1 A1 M1 A1 [4]	Do not accept multiplication by t. Substituting their $t=4$. This mark is dependent on the previous M mark. If 400000 seen award the previous mark	
	(iii)	For maximum speed $a=\frac{\mathrm{d} v}{\mathrm{~d} t}=0$ $\begin{aligned} & \frac{\mathrm{d} v}{\mathrm{~d} t}=150000\left(1-\frac{1}{2} t\right) \\ & \Rightarrow t=2 \\ & v=150000\left(2-\frac{1}{4} \times 2^{2}\right)=150000 \end{aligned}$ Maximum speed is $150000 \mathrm{~km} \mathrm{~h}^{-1}$	B1 B1 [2]	$t=2 \text { seen }$ Accept a trial and error method CAO	

Question		Answer	Marks	Guidance
2	(i)	p $\quad \sqrt{(-1)^{2}+(-1)^{2}+5^{2}}=\sqrt{27}$ q $\quad \sqrt{(-1)^{2}+(-4)^{2}+2^{2}}=\sqrt{21}$ r $\sqrt{2^{2}+5^{2}+0^{2}}=\sqrt{29}$ Greatest magnitude: \mathbf{r}	M1 A1 [2]	Use of Pythagoras Note Magnitudes are 5.196, 4.583 and 5.385 respectively
	(ii)	$\begin{aligned} & \text { Weight }=\left(\begin{array}{c} 0 \\ 0 \\ -4 \end{array}\right) \\ & \mathbf{p}+\mathbf{q}+\mathbf{r}+\text { weight }=\left(\begin{array}{l} 0 \\ 0 \\ 3 \end{array}\right) \\ & 0.4 \mathbf{a}=\left(\begin{array}{l} 0 \\ 0 \\ 3 \end{array}\right) \end{aligned}$ Magnitude of acceleration is $7.5 \mathrm{~m} \mathrm{~s}^{-2}$ Direction is vertically upwards	B1 B1 B1 B1 [4]	Condone $g=9.8$ giving weight is $\left(\begin{array}{c}0 \\ 0 \\ -3.92\end{array}\right)$ N. Accept $4 \downarrow$. $g=9.8 \text { gives }\left(\begin{array}{c} 0 \\ 0 \\ 3.08 \end{array}\right)$ Relevant attempt at Newton's $2^{\text {nd }}$ Law. The total force must be expressed as a vector in some form. For this mark allow the weight to be missing, in the wrong component or to have the wrong sign. Condone $m g$ in place of m for this mark only. CAO apart from using $g=9.8 \Rightarrow a=7.7$

4		mark	notes
(i)	Either using suvat: Use of $\mathbf{v}=\mathbf{u}+t \mathbf{a}$ $\mathbf{v}=4 \mathbf{i}-2 t \mathbf{j}$ Use of $\mathbf{r}=\left(\mathbf{r}_{0}+\right) t \mathbf{u}+1 / 2 t^{2} \mathbf{a}$ $+3 \mathbf{j}$ $\mathbf{r}=4 t \mathbf{i}+\left(3-t^{2}\right) \mathbf{j}$	M1 A1 M1 B1 A1 5	Column vectors may be used throughout; lose 1 mark once if \mathbf{j} components put at top or if fraction line included. . Notation used must be clear. substitution required. Must be vectors. substitution required. \mathbf{r}_{0} not required. Must be vectors. May be seen on either side of a meaningful equation for \mathbf{r} Accept $\mathbf{r}=3 \mathbf{j}+4 t \mathbf{i}-1 / 2 \times 2 \times t^{2} \mathbf{j}$ oe written in a correct notation. Isw, providing not reduced to scalar: (see 12c in marking instructions)
	Or using integration: $\begin{aligned} & \mathbf{v}=\int \mathbf{a} d t \\ & \mathbf{v}=4 \mathbf{i}-2 t \mathbf{j} \\ & \mathbf{r}=\int \mathbf{v} d t \\ &+3 \mathbf{j} \\ & \mathbf{r}=4 t \mathbf{i}+\left(3-t^{2}\right) \mathbf{j} \end{aligned}$	M1 A1 M1 B1 A1 5	Attempt at integration. Condone no ' $+\mathbf{c}$ '. Must be vectors. cao Integrate their \mathbf{v} but must contain 2 components. Must be vectors. May be seen on either side of a meaningful equation for \mathbf{r} Accept $\mathbf{r}=3 \mathbf{j}+4 t \mathbf{i}-1 / 2 \times 2 \times t^{2} \mathbf{j}$ oe written in a correct notation. Isw, providing not reduced to scalar: (see 12 e in marking instructions)
		5	
(ii)	$\begin{aligned} & \mathbf{v}(2.5)=4 \mathbf{i}-5 \mathbf{j} \\ & \text { Angle is }(90+) \arctan \frac{5}{4} \\ & =141.34019 \ldots \text { so } 141^{\circ}(3 \text { s. f. }) \end{aligned}$	B1 M1 A1 3	FT their \mathbf{v} Award for arctan attempted oe. FT their values. Allow argument to be \pm (their $\mathbf{i} \mathrm{cpt}) /(\mathbf{t h e i r} \mathbf{j}$ cpt) or \pm (their $\mathbf{j} \mathbf{c p t}) /($ their $\mathbf{i} \mathbf{c p t})$. Allow this mark if bearing of position vector attempted. cao
		8	

5		mark	notes
(i)	$\left(\begin{array}{c} -1 \\ 14 \\ -8 \end{array}\right)+\left(\begin{array}{c} 3 \\ -9 \\ 10 \end{array}\right)+\mathbf{F}=4\left(\begin{array}{c} -1 \\ 2 \\ 4 \end{array}\right)$ $\mathbf{F}=\left(\begin{array}{c} -6 \\ 3 \\ 14 \end{array}\right)$	M1 M1 A1 A1 4	N2L. Allow sign errors in applying N2L. Do not condone $\mathbf{F}=m g$. Allow one given force omitted. Attempt to add $\left(\begin{array}{l}-1 \\ 14 \\ -8\end{array}\right)$ and $\left(\begin{array}{c}3 \\ -9 \\ 10\end{array}\right)$ Two components correct cao
(ii)	$\mathbf{v}=\left(\begin{array}{c} -3 \\ 3 \\ 6 \end{array}\right)+3\left(\begin{array}{c} -1 \\ 2 \\ 4 \end{array}\right)=\left(\begin{array}{c} -6 \\ 9 \\ 18 \end{array}\right) \text { so }\left(\begin{array}{c} -6 \\ 9 \\ 18 \end{array}\right) \mathrm{m} \mathrm{~s}^{-1} .$ speed is $\sqrt{(-6)^{2}+9^{2}+18^{2}}=21 \mathrm{~m} \mathrm{~s}^{-1}$.	M1 A1 M1 F1 4	$\mathbf{v}=\mathbf{u}+$ ta with given \mathbf{u} and \mathbf{a}. Could go via s. If integration used, require arbitrary constant (need not be evaluated) cao isw Allow -6^{2} even if interpreted as -36 . Only FT their \mathbf{v}. FT their \mathbf{v} only. [Award M1 F1 for 21 seen WWW]
		8	

	mark	comment	sub
6(i) $\mathbf{v}=\mathbf{i}+(3-2 t) \mathbf{j}$ $\mathbf{v}(4)=\mathbf{i}-5 \mathbf{j}$	M1 A1 F1	Differentiating r. Allow 1 error. Could use const accn. Do not award if $\sqrt{26}$ is given as vel (accept if \mathbf{v} given and v given as well called speed or magnitude).	3
(ii) $\mathbf{a}=-2 \mathbf{j}$ Using N2L F = $1.5 \times(-2 \mathrm{j})$ $\text { so }-3 \mathrm{j} N$	B1 M1 A1	Diff \mathbf{v}. FT their \mathbf{v}. Award if $-\mathbf{2 j}$ seen \& isw. Award for $1.5 \times(\pm$ their a or a) seen. cao Do not award if final answer is not correct. [Award M1 A1 for - 3j WW]	
(iii) $x=2+t \text { and } y=3 t-t^{2}$ Substitute $t=x-2$ $\begin{aligned} & \text { so } y=3(x-2)-(x-2)^{2} \\ & {[=(x-2)(5-x)]} \end{aligned}$	B1 B1	Must have both but may be implied. cao. isw. Must see the form $y=$	
	8		

7		mark	comment	sub
(i)	$\mathbf{F}=5\binom{-1}{2}=\binom{-5}{10}$ so $\binom{-5}{10} \mathrm{~N}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Penalise spurious notation by 1 mark at most once in paper Use of N2L in vector form Ignore units. [Award 2 for answer seen] [SC1 for $\sqrt{125}$ or equiv seen]	2
(ii)	$\mathbf{s}=\binom{-2}{3}+4\binom{4}{5}+\frac{1}{2} \times 4^{2} \times\binom{-1}{2}$ $s=\binom{6}{39} \text { so }\binom{6}{39} \mathrm{~m}$	M1 A1 B1	Use of $\mathbf{s}=t \mathbf{u}+0.5 t^{2} \mathbf{a}$ or integration of \mathbf{a}. Allow \mathbf{s}_{0} omitted. If integrated need to consider \mathbf{v} when $t=0$ Correctly evaluated; accept \mathbf{s}_{0} omitted. Correctly adding \mathbf{s}_{0} to a vector (FT). Ignore units. [NB $\binom{8}{36}$ seen scores M1 A1]	3
		5		

